Spatial ML

Supervised

Classification problems

Regression problems

Models

Linear regression

Logistic regression

Decision trees

Random forest

Gradient-boosted trees

Neural networks

Workflow

Split to train and test parts

Fit the model

Evaluate

(data standardisation)
Hyper-parameter tuning
Data augmentation

Evaluation methods

Classification

Confusion matrix

Cat Dog Ant Fly
Cat 45 5 2 0
Dog 3 40 5 2
Ant 1 2 38 4
Fly 0 1 3 46

Evaluation methods

Classification

Confusion matrix

Accuracy

Cohen’s kappa score

Precision

Recall

Spatial dimension in ML

Spatial feature engineering

Map synthesis

Proximity

Map matching

Spatial effects

Dependence

Heterogeneity

import sklearn